Workshop tips
Track Planning Ideas

- Lessons from a small freight yard
- How to design and build expandable layouts
- Two layout concepts for small spaces
Lessons from a small
Most of us want at least one full-service yard on our model railroads where we can classify and sort cars, service locomotives, park cabooses, and represent other support functions.

As I learned in building Woodsriver Yard, shown in fig. 1, on my former HO scale Boston & Maine layout, a yard doesn’t have to be large to be interesting. Let me give you a guided tour and point out some of the features I included to make my little yard look – and operate – like the real thing.

**Classification tracks**

Tracks for sorting cars are what makes a yard a yard. Mine includes five parallel tracks where consists for local freights and blocks for through freights are assembled. The distance from the first turnout to the end of the stub tracks is about 10 feet, and the yard capacity is about 70 cars. My longest track can hold 15 or so 40-foot cars. Of course, not much classification is possible when the tracks are filled to capacity. Ideally, I’ve found the yard operates best if its tracks are less than half full. Then it’s easy to sort and move cars around to get them blocked in the desired order.

My yard ladder turnouts are hand-built and curved. This enabled me to place the yard ladder snug against the outside of the mainline turn-back curve. I also find the flow of the curved throat and slight curve of the classification tracks attractive.

My classification tracks aren’t permanently assigned for cars going to a specific destination. As the yard crew plans their moves, they decide which trains and blocks will be placed on each of the tracks. If there’s a block of cars on a track billed to a single destination, then by default that track will likely be selected for any additional cars bound for that destination.

I’ve placed magnetic labels, shown in fig. 2 on page 4, for the car-card boxes on the fascia. The labels can be easily moved to identify the current use of any track. Sometimes there can be blocks for multiple destinations on the same track. In either case, not
permanently assigning tracks by destination adds a lot of flexibility.

**Switching lead**

*Figure 3* shows a key operating element of the Woodsriver Yard—the yard lead (the track that extends outward from the classification yard ladder parallel to the main line). In my yard the lead is a separate track running parallel to the main line. The lead is an important feature, as it permits the yard switcher to work largely independently of departures and arrivals of other trains. The yard job needs to clear the lead only when a road locomotive needs to leave or run into the engine terminal.

When the lead is shorter than the longest cut being switched, yard work is slowed. My lead can hold about 20 cars, but I seldom use its full length. In yard designs where the main line is used as the yard lead and there are multiple train arrivals and departures, congestion is sure to result.

Running parallel to my classification yard, but separate from the ladder, are two tracks on which arriving freight trains terminate and outbound consists are parked prior to departure. Trains can arrive and depart on the two arrival/departure (A/D) tracks without interfering with the yard job working the classification yard. This proved to be critical to the smooth operation of the yard.

If I didn’t have independently accessed A/D tracks, the work would have to stop in this yard each time a train arrived or departed. Ideally, the A/D tracks would be located along the main line beyond the classification yard so operators aren’t elbowing each other for aisle space.

My A/D tracks are a tail of a wye coming off the main line. This arrangement allows either northbound or southbound trains to back in so that the locomotives aren’t trapped at the stub ends. This makes it easy for crews to run power to the engine terminal or get into the clear so the yard switcher can work the train’s consist. There’s also a crossover from the yard lead to the A/D tracks.

The nerve center of a prototype yard is the building where clerks sort the waybills and make up the switch lists that tell the switcher crews what to do. The yard office normally would be located near the start of the ladder tracks, which, as *fig. 3* shows, is where I placed my office. When there’s a lull in operations, the switcher is probably parked nearby, and its crew is inside the office drinking coffee.

The size of the building would depend on the size of the yard, and typically it may house a break room and crew lockers.

**Engine terminal**

If space is critical, one could do without an engine terminal. When engines aren’t in service they can be parked on any open track. But for most modelers an engine terminal is an opportunity to install interesting structures and a great place to show off their locomotive roster.

If steam power is used, it’s almost mandatory to have a way to turn locomotives on a turntable, wye, or in rare instances, a balloon track. Turntables take up quite a chunk of space, but being able to store engines on the radial tracks makes it easy to access them.

My engine terminal lacks a turntable—see *fig. 4* on page 6. Locomotives take up quite a chunk of space, but being able to store engines on the radial tracks makes it easy to access them.

My engine terminal lacks a turntable—see *fig. 4* on page 6. Locomotives take up quite a chunk of space, but being able to store engines on the radial tracks makes it easy to access them.
specific assignment. On the other hand, my nearby wye offers an easy way to turn not only engines but entire trains. It also happens to fit into my space very well.

You probably won’t consider a balloon track or reversing loop for turning locomotives unless this track arrangement is already part of the layout plan. With diesels, turning usually isn’t required, and some modern-era modelers have a filled-in turntable pit as part of their scenery.

There are also car movements in and out of engine terminals, including incoming loads of fuel, sand, parts, and supplies, all usually in home-road cars. Outbound loads include ashes and scrap. The engine terminal is an industrial switching complex that the yard crew can work when they’re finished in the classification yard.

**Caboose track**

If you’re modeling an era when cabooses were still in service, you probably should have a track or specific place in a yard to store cabooses. A string of these cars can be an attention-getter in a sea of drab rolling stock. If there’s enough space available, include a shed, hoses, and other equipment and materials required to inspect, clean, and service cabooses for the next run.

---

**Fig. 3 Yard lead.** The Woodsriver Yard lead is a separate track that runs parallel to the main line so switching can continue as other trains arrive and depart. The train in the foreground is departing to the south. Over the hood of the 1535 is the crossover connecting the lead and arrival/departure tracks. The yard office (right) is also located along the lead.
The caboose track should be located where it’s convenient to add a caboose to a train or drop it off when a run terminates. A caboose is usually the last car coupled to a consist. It shouldn’t be placed at the end of a yard track where cuts of cars are repeatedly shoved against it as the train is made up. Instead, have a switcher tack the caboose on once the train’s consist is complete, or back the entire consist up to the caboose.

Car repair
At yards that interchange with connecting railroads (and at other points as well), there’s often a track or two set aside for freight-car repair, usually called the RIP (repair-in-place) tracks. Many are modest, with just enough capability to repair a defect so a car can be forwarded to its home-road shop.

Figure 5 shows my RIP track, which includes a wheel crane and some wheelsets. You can make it more than just a bit of scenery and designate it as a car spot. In your car movements, create a bad-order ticket or two and have the yard job move that car to the repair track.

Yards are often places where you find stored maintenance-of-way equipment. This can include old Pullmans rebuilt as dormitories, flatcars carrying earth-moving equipment, and ballast hoppers. It’s a great opportunity to include equipment that’s a little different and from an earlier era. And the cars can contribute to operations if you occasionally dispatch a work train during a session.

Industrial track
Industries frequently clusters near yards because the location is convenient for railroads to switch, and the adjacent real estate, at least originally, was often available.
Behind my yard I’ve built a long spur serving six different companies, shown in fig. 6. The varied structures make a nice backdrop for the scene. But in some places the spur is as much as 30” from the aisle, making it a bit difficult for shorter people to uncouple cars back there. As a result, we’ve had some operating sessions where the industrial siding didn’t get worked, although another reason is that the crew may have had its hands full getting trains in and out of the yard.

You might want to think twice about concentrating too many activity points so close to one another. Or if you do, make sure there’s easy access for doing the work.

**Spreading it out**

You can see that there’s a lot more to yard operations than simply sorting cars and making up trains. Variety makes yards interesting.

As you plan your own yard, try to lay out the various pieces to minimize congestion. If possible, spread out the elements in a linear fashion to prevent yard crews and road crews from having to stand in the same few feet of aisle space.

Another solution is to include aisles on both sides of a yard. Rather than locating the yard area up against a wall, some modelers have created an open pit behind their yards exclusively for the yard crews. Other crews use the aisle in the front of the yard. With proper planning, you’ll be able to make your yard the nerve center of your railroad. **MR**

Paul J. Dolkos lives in Alexandria, Va. He’s a frequent contributor to Model Railroader magazine.

---

**Fig. 5 RIP track.** Many yards have a designated RIP, or repair-in-place, track where freight car wheel replacement and other running repairs are performed. At Woodsriver Yard, this activity is suggested by a crane and some spare wheelsets. The snowplow waits for winter on an out-of-the-way track.

**Fig. 6 A working yard.** The five-track yard with dual arrival/departure tracks is center left in this photo. The classification tracks are only partly full, making it easy to sort freight consists. At right is a spur that serves six industries. Their structures form a backdrop for the Woodsriver Yard. Note the access road between the yard and the engine terminal.
In Model Railroader’s December 1996 issue, then-associate editor Marty McGuirk presented the Carolina Central, an N scale sectional-track layout designed for a 28" x 80" hollow-core door. (For an up-to-date guide on getting started in N scale, see Marty’s recent book, N Scale Railroading, Getting started in the hobby, available in hobby shops and online at www.ModelRailroader.com.)

The Carolina Central is a freelanced subsidiary of the Southern Ry., which is now part of the Norfolk Southern. Similar prototypical examples aren’t difficult to find. Consider the Eastern Tennessee & Western North Carolina or the Interstate. Both lines came under Southern control and had hood units painted in SR livery, although the lines’ road names remained on the locomotive’s long hood.

To ease any paint scheme concerns, you can remove the lettering from an Atlas Southern high-hood GP38 and add “CAROLINA CENTRAL” in dulux gold, sans serif lettering. Microscale makes Southern hood-unit decals to help you letter an Alco RS-3. You could backdate the CC to the steam era by re-lettering a Bachmann SR 2-8-0, or you could update the CC by using an NS unit in the “Thoroughbred” scheme.

More action on the Carolina Central

Adding staging to an N scale railroad sized for a hollow-core door

By Tony Koester
This Alco RS-3, no. 210 of the Eastern Tennessee & Western North Carolina, ties up at Elizabethton, Tenn., in 1972. The locomotive is dressed in the colors of its parent, the Southern Ry.’s black, gray, and gold.

Staging and interchange

Marty’s article gave two ways for this railroad to connect with the rest of the North American rail network: an interchange with the Seaboard Air Line (which merged into the Seaboard Coast Line, then became one of the Family Lines, and is part of CSX today) and a two-track staging yard screened from direct view by a tree-covered ridge.

Expanding the railroad

As Marty stated in his article, “If you ever get the bug or space to expand, the SAL interchange track would be an ideal place to start.” The interchange is too valuable to sacrifice, however, so I added a new wye connecting to a second staging yard.

More staging will support additional train movements, which in turn will increase the complexity of operation, especially for the local freight crews. Greater challenges equate to more operating fun!

Consider this example: If westbound local freight No. 21 rolls into Martinville at 10 a.m., and eastbound passenger train No. 12 is due at 10:30 a.m., the freight crew will have to clear the main line before the arrival of the “varnish.” And if the timetable calls for westbound second-class freight No. 93 to roll through town at 10:45 a.m., the crew will have to find a way to manage their work so as to clear up for No. 93 as well.

If No. 12 is a bit late, the crew may have to find a way to tuck their train into the industrial sidings or the SAL interchange to allow room for Nos. 12 and 93 to be in town at the same time. Before long, through eastbound freight No. 98 will be passing, so the local crew will have to clear the main again for No. 98 or be out of town before the second freight arrives.

Later that day, the eastbound local, No. 22, will work the Martinville industries, while westbound passenger train No. 11 may cause No. 22’s crew to keep a wary eye on their watches.

A shelf for staging

A narrow shelf extending off the right end of Marty’s plan would provide the extra staging tracks needed to support the operating scenario I just described. By using a wye to connect the new staging tracks to the track plan’s original oval, staged trains will then be able to traverse the scenicked part of the railroad in either direction. This will create a polarity-reversing section, but Andy Sperandeo’s Easy Model Railroad Wiring (from Kalmbach Books) will show how you can wire it. Or if you use Digital Command Control, many power supplies can control reversing sections automatically.

If you have a bit more room on your layout for a return loop, trains that enter the staging yard can be reused. And if you use the new staging tracks in conjunction with the hidden passing track that was designed for the original plan, a variety of train movements is possible.

My experience tells me that where realistic operation is concerned, the more staging, the merrier.

Tony Koester is the editor of Model Railroad Planning and a contributing editor for Model Railroader. He has also written several Kalmbach books, most recently Designing & Building Multi-Deck Model Railroads.
Build sector plates to save staging space

These pivoting panels let you switch cars in a compact area

By Sam Swanson
Photos by the author

My 11 x 12-foot HO scale layout has both standard and narrow gauge lines, and both of them terminate at sector plates. These plates pivot at one end to allow me to transfer cars between staging tracks without lengthy turnout ladders. I built my plates with tempered Masonite and other materials I had on hand.

The key thing is to place the sector (and its plate handle and hinged electrical connections) where it’s easily accessible and can operate smoothly. The plate should move freely in both directions without disrupting any rolling stock or locomotives on its track.

Assembly and wiring

I have three sector plates on my layout, two narrow gauge and one standard gauge. I placed the sector plates on top of the Masonite shelves (unfinished side up for both components), so there’s just enough friction between the surfaces to let me slowly and carefully position the sector plate tracks between moves. Plans for my narrow and standard gauge sector plates are shown on the opposite page.

Here’s how I assembled the sector plates. First, I installed the shelf and approach tracks. Next, I built mock-ups of the full-size plates with corrugated cardboard. Once I was satisfied with the mock-ups, I cut the sector

Making the electrical connection. The sector plates are electrically connected to the staging tracks with 3/4" hinges and brass wire. In the foreground is the handle Sam uses to move the plate from side to side.
plates from Masonite and secured them with pivot bolts.

I then attached the tracks with track nails and checked the alignment. Both the fixed approach tracks and movable plate tracks are segments of flex-track. Then I soldered a printed-circuit board tie about 1/8" from the rail ends. I spaced the rail ends for the approach tracks and sector plates about 1/8" apart, which allows for seasonal expansion and contraction.

Finally, I wired the sector plates. I used soldered connections at the back of each siding and connectors made from brass hinges at the moving end. See the photo on the previous page.

**Framing the shelves**

I built the framing for the shelves from pine. After screwing the boards together, I screwed the frames to the walls. Then I secured the Masonite to the frame with Liquid Nails and 3/4" brads spaced 6" apart.

Next, I attached the standard and narrow gauge track on the sector plates with Micro Engineering no. 30106 track spikes. I used a no. 68 bit to drill holes through the plastic ties, spacing them roughly 5" apart. If the spikes protruded from the bottom of the sector plate, I trimmed them flush with the surface of the Masonite.

**Get a handle on it**

A variety of handles can be used to move sector plates, but I used the simplest of push-pull implements. I used yellow glue to attach a 2 1/2" length of basswood near the edge of each plate.

On the narrow gauge plate, I used 3/16" square handles, while the standard gauge plate has a 1/8" x 1/2" handle. As long as three or four fingers can gently push and pull the sector plate evenly, that’s all you need.

**So far, so good**

I’ve used the standard and narrow gauge sector plates for more than four years, and all three plates work as reliably as the day they were installed. Visitors often ask if the plates have warped or become misaligned due to seasonal humidity and temperature changes. I’m happy to report that I haven’t had any problems with the plates since I installed them. MR

*Sam Swanson is a civil engineer in Cincinnati, Ohio. His 11 x 12-foot HO scale model railroad features Appalachian logging and mining railroads in the 1930s.*
The construction of the ideal model railroad has, it seems, come to be a matter of convention. First, we find a large basement with a house of some sort on top of it. Then we expend reams of paper and anxious months, if not years, designing our layout. Next, we consume a forest or two of lumber erecting substantial benchwork, after which we carefully lay hundreds of yards of track and go doo-lally trying to ballast it neatly. Then comes the fun of trying to wire it all up and make it go.

Having accomplished all of that, we’ll probably operate the layout for a while as the Plywood Pacific and finally—anything up to 20 years after we started—finish up with a flourish of scenery. All in all, it’s an approach that works well enough, but is it the only way of going about the job?

**A piecemeal approach**

As a layout designer, I’m often asked to create such grand designs, what I call “maybe layouts.” I’ve known a fair few folk who have spent literally decades planning such layouts—model railroads that, deep down, they know will probably never get built.

Usually, my advice is to forget the future and to consider something that can be started today with the time, space, and cash at hand. But, I hasten to add, they should design and execute it in such a way that it can become part of a grander affair if and when the opportunity arises—something like having your cake and eating it too.
This type of adaptable model railroad doesn't sit too happily with the traditional way of doing things. A somewhat more flexible approach is needed in that elements of the design will remain fluid, and the sequence of construction will not necessarily follow convention. Some parts of the model may well be completed before other parts are even conceived. It's not that you don't plan or build benchwork or track or scenery; rather, it's more that you do so in discrete chunks instead of as part of an overall design.

A key component of such an approach is the benchwork. Much of the benchwork I've seen in North America is permanent – very permanent. Often it's fastened to the structure of the building; uses long, unbroken runs of framing; and features massive, continuous scenery. On such layouts, everything is irredeemably tied to the underlying benchwork. Usually, the only way to move or alter such a model is to send in a wrecking crew and accept the fact that a lot of money and many hours of hard work are going to wind up in a land fill – and even more money and hard work are going to be needed before there's a viable layout again.

This is in total contrast to the way things are typically done in Britain, where people tend to relocate relatively often; and where model railroad exhibitions (and hence portable layouts to display at them) are very popular. Most British layouts are built as a series of discrete, self-contained sections of moderate size, using a variety of methods and materials to build the necessary adaptable benchwork. Section-joining systems, track alignment, and electrical continuity long since ceased to be problems, with established techniques and dedicated components being available for the task.

In the United States, David Barrow has advocated something similar: the “domino” segments he uses to reconfigure his HO scale Cat Mountain & Santa Fe layouts, including the latest edition featured in the August 2009 Model Railroader. David’s system is a variation on the popular modular layout systems, like Ntrak, in that the “building blocks” are a consistent size and shape like the bricks in a wall.

Unlike the Ntrak system, however, the trackwork on David’s dominos isn’t designed in modular form, so one layout section can’t be swapped at will with any other. Similarly, most British sectional layouts don’t have interchangeable sections; instead, they more closely resemble a fieldstone wall made up of irregularly shaped pieces of various sizes that fit together to form the final layout, almost like a jigsaw puzzle on a grand scale.

**Separate infrastructure**

There are a number of ways to build sectional layouts, but the key is a complete separation of the infrastructure for each section of the model from the framework supporting the whole layout above the floor (or from a wall). This doesn’t involve anything particularly revolutionary – L-girder benchwork remains a very good supporting system, but it doesn’t have to be a massive structure fixed to the building.

Rather, it can easily be designed to be free-standing and adaptable, capable of being taken apart, reconfigured, or moved. After all, any L-girder benchwork consists essentially of three basic elements: girders, legs, and joists (cross-members), with maybe a few bracing struts.

If you design all of these as separate pieces that bolt together, you end up with a system that can be easily altered and used to support any layout elements you care to place on top of it. This is the principle successfully exploited by Sievers and similar modular benchwork systems.

With the support element taken care of, you then need only come up with something for each section upon which you can base the actual modeling. This can be as simple as a flat board or as elaborate as a three-dimensional plywood structure to hold up a mountain. As long as it’s strong and rigid enough to support itself and the modeling on top when it’s picked up, and light enough to be easily transported, then it serves the purpose.

Such layout sections can range from a few inches across to the biggest size you can physically handle, fit in a vehicle, or get through a doorway. Based on my experiences in the United Kingdom, about 3 x 6 feet seems to be a sensible size limit.

**The sectional advantage**

So what are the advantages of building a layout in discrete chunks? For starters, sectional layouts are easy to move, modify, or extend. This cuts down on the unnecessary destruction of models, as individual sections or entire layouts can be moved or sold because of their built-in portability. You’ll never need to scrap anything and start over unless you want to, and good modeling can live on to give someone else pleasure. On the construction front, you’re always working toward a relatively attainable goal. There are no endless marathons of one task or another such as wiring an entire layout, so variety is assured.

Stemming from these features are other benefits. Once you have the first section up and running, you have a layout of sorts. With even quite a small number of sections completed, you can be well into the operating game. By butting movable staging sections up to either end, you can operate virtually all of the planned traffic through the finished sections.
Since the sections are movable, you're not tied to working on the layout on site. I designed one such layout for a long-haul trucker; he takes a section of the layout with him on trips so he can work on it in his sleeper-cab during layovers. The whole layout, when put together, occupies an old 40-foot trailer parked beside his house. If he ever relocates, all he has to do is hitch up the rig and the layout goes along with him.

I've also found that it's easier to keep going under this piecemeal system. As you finish each section, your enthusiasm builds for the next one. Often, new ideas can be incorporated simply by adding extra sections, maybe to fit between two existing ones, or in front, behind, or (most often) on one end or the other. I've also found that a section that was part of an original concept can inspire other sections that weren't part of the plan at all.

As your skills develop and standards improve, you can rework or even replace older sections without tearing up half your layout. No matter what your circumstances, you can be making gradual, steady progress towards that big layout that you've always wanted to grace your retirement. Best of all, you still have a finished model railroad to operate in the meantime!

**Designing a sectional layout**

Almost any type of railroad subject can be the theme of a sectional layout. A model railroad is essentially a series of individual elements (Layout Design Elements, if they're prototype-based) – a yard, an industry, an interchange, an engine terminal, a signature scene – tied together. Sectional logic would suggest that each element is built on a separate section or group of sections, which can be completed in themselves without the need to have the other sections completed before they can be used for running trains.

Rather than trying to describe this process in general terms, I'll show you an example railroad that uses popular design elements arranged in such a way that they'll function as discrete layouts while still forming part of a longer-term and more-ambitious scheme. I've called this railroad the Gulfport, Yarde & Industry (GY&I) to signify the three main elements of its design. As I hope you'll see, the project grows from something that could be started in an apartment (Gulfport – short version plus staging in an L-shape); expanded in a townhouse, condo, or starter home (Gulfport plus Yarde in U-shape); and wind up as a medium-size basement layout.

There's no fixed order to the creation of these keynote elements. For the purposes of the exercise, I have taken a fairly modest 2 x 12-foot area as the footprint of Gulfport, Yarde, and Industry. I have also stuck to a maximum section size of 2 x 6 feet to make moving them more manageable.

There's nothing unusual or innovative about the actual railroad design. The track plan could be adapted to suit other prototype themes. I drew the plan for HO, but it could also work for N; on a sectional layout, adjusting aisle width is not a problem.

**A Gulf Coast short line**

The GY&I is a freelanced model railroad of “long shortline” proportions, running north from a Gulf Coast seaport such as Gulfport, Miss., or Mobile, Ala. Its terminal to the north is the sizable city of Industry, Ala., a center for steel-making and other heavy industry. If you think of the Louisville & Nashville's Birmingham route on a much smaller scale, you aren't far off.

So we'll think of this as an L&N subsidiary, mixing its own small stable of older diesel switchers and road units with newer L&N power in yellow and gray, working a heavy traffic in steel products and raw materials, oil, fertil-izer, sugar, corn syrup, kaolin, export coal from eastern Kentucky, perishable and agricultural produce from the lower Midwest, lumber products from Georgia and Alabama, container traffic, and a wide range of manufactured goods moving both ways. In short, it's an excuse to run pretty much anything that takes your fancy.

The inspiration for this scheme came from the book *DiXie Lines – The Louisville & Nashville RR* by David P. Oroszi and Ron Flanary (Hundman Publishing, 2003). Ron, Dave, and Garland McKee also teamed up to produce *The Louisville & Nashville in the Appalachians* (Old Line Graphics, 1990). Both of these books contain valuable information and photos on railroading in the southern United States.

I had in mind a mid-1960s through '70s time frame for variety in motive power – some older Alco diesels among all the Electro-Motive Division locomotives. The time frame could easily move either way: forward to the present-day CSX with double-stack containers and large freight cars, or back to the steam era of Consolidations, Mikados, and 40-foot boxcars.

The visual keynote is a typical Gulf of Mexico port with drawbridg-
The Gulfport, Yarde & Industry

The basement- or garage-size Gulfport, Yarde & Industry concept is built around the key sections used in the original bedroom design, particularly the Gulfport section and an extended version of Yarde. The three towns all occupy the same basic 2 x 12 footprint. The extent of the various self-contained sections and the joints between them are shown by the red arrowheads.

The overall scheme is simple: a point-to-point system with an optional continuous run. As befits its seaside location, Gulfport is at the 0” datum level. The route remains at 0” through the hidden tracks under the throat of Yarde until it reaches the far end of the river bridge.

En route, the GY&I main passes through a stretch of typical Delta farmland complete with a melon field. At Yarde, the elevation is 3½” to provide minimal clearance over the hidden track, allowing an inch for roadbed and subroadbed thickness.

The line remains level through Yarde, then drops at about 2 percent alongside a polluted industrial ditch to an elevation of 2” at the throat of Industry. The main line remains level by the Industry depot and yard area, then drops back to 0” through the hidden section beneath the stairs and over the lift-out access to the laundry room to complete the continuous run. – I.R.

Most of the necessary materials are readily available, and sectional modeling doesn’t call for anything radically different on the construction front. It’s more a different way of thinking about the development of a model railroad than some revolutionary new method of building it. MR

Iain Rice lives in Devon, England, and is a frequent contributor to Model Railroad Planning and Model Railroader magazines. Iain has also written three track planning books for Kalmbach Books, Small, Smart & Practical Track Plans (2000), Mid-sized & Manageable Track Plans (2003), and most recently, Shelf Layouts for Model Railroads (2009). Iain’s plans draw upon his considerable knowledge of and experience with railroading on both sides of the Atlantic Ocean.